Viscosimetric Molecular Weights: Some Computer Programs for Experimental Data Elaboration

AMABILE PENATI, GABRIELE PAGANI, GIANCARLO LOCATI, and ENZO BEACCO, Institute of Industrial Chemistry, Section of Applied Chemistry and Materials, Polytechnic of Milan, Milan, Italy

Synopsis

Abstract

New methods have been developed for the computer which allow viscosimetric data elaboration. Two methods evaluate the intrinsic viscosity, the Huggins or the Kraemer constant, the molecular weight, and their confidence limits according the Student's t-distribution starting from the simplest viscosimetric data. The kinetic energy influence is considered. Another method is used when the Huggins constant is known.

INTRODUCTION

The viscosity of dilute solutions is very often used for measuring polymer molecular weights because the experiments are simple and reliable. The graphic elaboration of the experimental data according to Huggins ${ }^{1}$ or Kraemer ${ }^{2}$ for obtaining the intrinsic viscosity, from which through the MarkHouwink relationships ${ }^{3,4}$ molecular weights are evaluated, is quite tedious and subject to errors. Computer programs have already been prepared for accelerating and improving the treatment of data,,$^{5-8}$ however, these programs made use of simplified formulas and partially elaborated data.
In this paper, we present programs which evaluate the intrinsic viscosity, the Huggins (or Kraemer) constant, the molecular weight, and their confidence limits according to the Student's t-distribution starting from the simplest viscosimetric data such as the polymer weight, the solvent volume, and the solvent and solution efflux times.

GENERAL RELATIONSHIPS

The specific viscosity $\eta_{s p}$ and the relative viscosity $\eta_{r e l}$ are so defined ${ }^{9-11}$ considering the kinetic energy influence ${ }^{12,13}$:

$$
\begin{equation*}
\eta_{s p}=\eta_{r e l}-1=\frac{\rho t}{\rho_{s} t_{s}}\left[\frac{1-\frac{K}{t^{2}}}{1-\frac{K}{t_{s}^{2}}}\right]-1 \tag{1}
\end{equation*}
$$

where ρ_{s} and ρ are the solvent and solution densities, t_{s} and t are the efflux 2583

1*	DIMENSION (10001 \% X (1000) - Y (1000). IITLE(13) - ANI(10), VOLSOL (1000), W	
2*	IESOL(1000), ROSOLU(1000):CC(1000)	
3*	63 READ(5,85)MN	
$4 *$	80	F9RMAT\{I3)
5.	D0t6311=1.7N	
68	READ 5 , 60) (TITLE(J), J= 1.13)	
7*	WRITE(6.59)(JITLE(J), J=t, i3)	
8 *	60 F	FORHAT(13AB)
9*	59	FORMAT(1H1-2X*13A6)
10*		READ (5,2) (ANI (K), K=1,6) - IPERC
11*	2	FORmat (6F10.3.I 10)
12*		READ(5,61) AC*AKA
13*	61	FORMAT(F10.4.E10.3)
14*	62	READ(5.B)NN,AKK,ROSOLV,ROPOLY
15*	8	FORHAT(13.3F15.8)
16*		IFINN.LE.IIGOTOI63
17*		REAOT 5, 9ITS.IT(I), I=IONW:
18*	9 F	FORCATIIOF8.31
19*		READ(5,99) WEIGHT, (CC(1), I=IONN)
20*	99	FORMATIF10.7.10F 7.4)
21*		SUMCC $=0.0$
22*		DO77月=1.NN
23*		SUMCC=SUACC*CC(m)
24*		VOLSOL (H) = SUMC C
25*		X(M) = WEIGHI* $100.0 /$ SUMCC
26*	71	COMTINUE
27*		Sun $x=0.0$
28*		SUA $Y=0.0$
29*		SUMXY $=0.0$
30*		SUMXQ $=0.0$
310		$001 \mathrm{H}=1 . \mathrm{NN}$
32*		IFIAKK.LT.0.0)691044*
33*		VOLPOL =WEIGHT/ROPOLY
34*		WESOL (H) $=V O L S O L(M) * R O S O L V$
35*		
36*		
37*		15**211-1.0/X(R)
38*	44	
39*		SUHX $X=$ SUM $X \in X(H)$
40.*		SUMY=SUMY*Y(M)
1*		
420		
43*	7	COMTINUE
4**		WRITE(6,19)
45*	19	FORHATI/f/eIX* LIST OF MEASURES *-1\%
46 \%		IFTAKR.LT.0.0才GJT0666
4\%*		WRITE16.667115
48*	6671	
49*		IECTIONS */1)
50*		IFTAKK.GT.0.0) G0T0771
51*	686	6 WRITE(6.668)IS
52*	688 F	
$53 *$	$7 \begin{aligned} & \text { NOBS } \\ & \text { C=NN }\end{aligned}$	
54*		
550		X MED $=$ SUNX/C
$56 *$		NI $=$ NN-2
57\%		B=(SUMXY-XMED*SUMY) (SUMXO-C*XMED**2) $^{\text {S }}$
58 *		$A=S U R Y / C-8 * X M E D$
5\%\%		$P K=B / A * * 2$
60%		X $Q=0.0$
1*		HIN $=0.0$
62\%		DO30 M = 1,NOES
63%		$I=A+8 * X(M)$
$64 *$		OMIM $=Q R I M+(Y 1-Y(B)) * * 2$
$65 *$	$X 0=X Q+(X(H)-X M E O) * * 2$	
66 *		
67*		
68*	1.4.2X, Y Y = - F \%.4./.)	
69\%	30 CONTINUE	
10*		SYESORT(QHIN/(C-2.01)
71*		ALIMB=ANI (NI)* (SYX/SORT (XO)
72*		
73*		IRITET6,2115YX
14*	21	
75*		URITE 6, 391IPERC
76*	39	ORMATE///E. CONFIDENCE INTERVAL $=*$ I 31
7**		URITE(6.5)A ALIMA
18**	5	RITE(6.69)B.ALIMB

Fig. 1 (continued)

```
80%
8:*
82*
03*
84*
85*
86*
07*
88*
89*
90*
91*
92*
93*
94*
95*
96*
97*
98*
99*
100*
101*
102*
103*
104%
105*
106%
107*
108*
104%
110*
```



```
    BM1N=B-ALIMB
```

 BM1N=B-ALIMB
 APAX=A&ALIMA
 APAX=A&ALIMA
 AmIN=A-ALIMA
 AmIN=A-ALIMA
 PK隹AX二B革AX/AMIN**2
 PK隹AX二B革AX/AMIN**2
 PKMIN=8MIN/AMAX**2
 PKMIN=8MIN/AMAX**2
 WRITETB:233IPKGPKMAX OPKMIN
 WRITETB:233IPKGPKMAX OPKMIN
 233 FORMATI/** HUG6INS CONSTANT=**F7.4.2X** max=**FT.4.2X** mIN=**F7.
233 FORMATI/** HUG6INS CONSTANT=**F7.4.2X** max=**FT.4.2X** mIN=**F7.
14.)
14.)
IF(AKA.LT.O.O)G5TOT3
IF(AKA.LT.O.O)G5TOT3
AO=A/ARA
AO=A/ARA
RA=1.0/AC
RA=1.0/AC
AL=ALOG(AO)
AL=ALOG(AO)
AOA=1A*ALIMA)/AAKA
AOA=1A*ALIMA)/AAKA
AOM=(A-ALIMA)/AKA
AOM=(A-ALIMA)/AKA
ALA=ALO6《AOA)
ALA=ALO6《AOA)
ALM=ALOG(AOM)
ALM=ALOG(AOM)
ARG=RA*AL
ARG=RA*AL
AHEEXP(ARG)
AHEEXP(ARG)
AMA=EXP(RA*ALA)
AMA=EXP(RA*ALA)
AHI=EXP{RA*ALG:
AHI=EXP{RA*ALG:
WRITE(6*T9)ACOAKA

```
        WRITE(6*T9)ACOAKA
```



```
        WRITE(6,6)AM,AMA,AMI
```

```
        WRITE(6,6)AM,AMA,AMI
```



```
    1.E10.H:/1HO)
```

 1.E10.H:/1HO)
 73 60TO 62
 73 60TO 62
 IGS CONTINUE
IGS CONTINUE
26 STOP
26 STOP
END

```
        END
```

Fig．1．First computer program using Huggins equation．
 1ESOL（1000），ROSOLU（1000），CC（1000）
63 READ（5，80）MN
80 FORMAT（I3）
00163 II $=1$ ． HN
REAO（5．60）（TITLE（J），J＝1，13）
WRITE（6．59）（TITLE（J），J＝1，13）
60 FORMAT（13AG）
59 FORMAT（1HI，2X，13A6）
REAO（5，2）（ANI（K），K＝1，6），IPERC
2 FORMAT（6FID．3．IIO\}
READ（5．61）AC．AKA
61 FORMAT（FIN．4－E10．3）
62 READ（5，B）NN，AKK，ROSOLV，ROPOLY
8 FOAMAT（I3，3F15．8）
IFINN．LE．11GOTO163
READ（5．9）TS：ITII，I＝1，NN）
－FORMAT（10FB．3）
READ（5．99）WEIGHT\＆（CC（1）．I＝1，NN）
99 FORMATIF10．7．10F7．4）
SUMCC＝0．0
0077M＝1－NM
SUMCC＝SUMCC＊CC（M）
VOLSOL（H）＝SUHCC
$X(M)=$ WEIGHT＊ 200.0 ／SUMCC
17 CONTINUE
SUMX $=0.0$
SUMY $=0.0$
SUMXY＝0．0
SUMXO＝0．0
DO $7 \mathrm{M}=1 \mathrm{NH}$
IFIAKK．LT．O．OIGOTOM4
VOLPOL＝UEIGHT／ROPOLY
HESOL（M）＝VOLSOL（M）＊ROSOLV
ROSOLU（H）＝（WEIGH＋WESOL（M））／（VOLPOL＋VOLSOL（M））
 1＊21）／（x（m）
44 IF（AKK．LT．O．O）Y（M）＝ALOG（T（M）／TSI／X（M）
$\operatorname{sun} X=\operatorname{SUM} X+X(n)$
SUNY $=$ SUMY $-Y(M)$
SUMXY＝SUHXY $+X(M): Y(m)$
SUNXO＝SUMXO＋X（H）＊X（M）
CONTINUE
URITE（6．19）
Fig． 2 （continued）

```
45*
19 FORHATI///,IX;* LIST OF WEASURES *:/1
    IF(AKK.LT.0.0IGOT0666
    HRITEP6.6671TS
667 FORMATI//,2X,"TS =',F7.2.5X;" HITH DENSITY ANO KINETIC-ENERGY CORR
    IECTIONS **/N
    IF(AKK.6T.0.016010777
666 URITE{6.668)TS
668 FORMATC//FIX," IS =',F7.2.5X," UITHOUT CORRECTIONS *.//)
71 MOBS=NN
    C=NN
    XMED=SUMX/C
    NI =NN-2
    B=(SU#XY-XMED*SUMY) / (SUMXO-C*XMEQ**2)
    A=SUMY/C-B*XHED
    OK=8/A**2
    xa=0.0
    OMIN=0.0
    0030 m=1,NOBS
    Y1=A*B* Y(M)
    OMIN=OHIN+(YI-Y(H))**2
    XO=XQ+(X(F)-XHED)**?
    URITE(6,20)M,I(M), X(M),Y(M),Y1
```



```
    1.4.2X., Yi=*.F7.4.1.)
3O CONTINUE
    SYX=SORT(OMIM/(C-2.0))
    ALIMB=ANI(NI)*(SYX/SORT(XO))
    ALIMA=ANI(NI)*SYX*SORT(1.O/C*XMEO**2/XOI
    URITE(6,21)SYX
21 FORMAT(//.0 STANDARO DEVIATION=*OF7.*)
    URITE(6.30)IPERC
39 FORMAT(///*' CONFIDENCE INTERVAL =',I3)
    URITE(6,5)AA,ALIMA
    5 FORMAT(//.* INTERCEPT(=INTRINSIC VISCOSITY)=9,F6.3.3H**-F6.4.//l
        URITE(6.69)B,ALIMB
69 FORMATIIX," SLOPE=',EIO.4.3H *-OEIO.4./.1
    BMAX=B*ALIMB
    8MIN=B-ALIHB
    AMAX=A ALIIMA
    AMIN=A-ALIMA
    OKMAX=BMAX/AMIN**2
    QKMIN=BMIN/AMAX**?
    WRITE(6.233)OK,OKMAX,OKMIN
```



```
    1.41
        IFIAKA.LI.O.0)GOTOT3
        AO=A/AKA
        RA=t.0/AC
        AL=ALOG(AO)
        AOA=(A+ALIMA)/AKA
        AOM=(A-ALIMA)/AKA
        ALA=ALTG(ADA)
        ALM=ALOG(AOM)
        ARG=RA*AL
        AM=EXP(ARG)
        AMA=EXP(RA*ALA)
        AMI=EXP(RA*ALM)
        WRITE(G,T9)AC,AKA
```



```
        HPITE(6,6)AM,AMA,AMI
    6 FORMAITIX," AVERAGE MOL WEIGHT=' -EIO.4.2X." mAX=',EIO.4.2X," MIN=*
        I.EIO.W./IHO)
    73 GOTO 62
163 CONTINUE
    26 STOP
        END
```

Fig. 2. Second computer program using Kraemer equation.
times of the solvent and of the solutions from the capillary viscometer, K is the viscometer constant, which depends on its geometry.

The concentration of diluted solutions is generally very low ($<1 \mathrm{~g} / 100 \mathrm{cc}$) so that the solvent and the solution densities are very close. Supposing that $\rho_{s}=\rho$, if K / t_{s}^{2} and K / t^{2} are both negligible with respect to unity, which can be obtained with suitable viscometers, eq. (1) becomes

$$
\begin{equation*}
\eta_{s p}^{\prime}=\eta_{r e l}^{\prime}-1=\frac{t}{t_{s}}-1 \tag{2}
\end{equation*}
$$

The equations which correlate $\eta_{s p}$ and $\eta_{\text {rel }}$ to the concentration c are

$$
\begin{gather*}
\eta_{s p} / c=[\eta]+k^{\prime} c[\eta]^{2} \tag{3}\\
\ln \eta_{r e l}^{\prime} / c=[\eta]+k^{\prime \prime} c[\eta]^{2} \tag{4}
\end{gather*}
$$

where k^{\prime} is the Huggins constant, ${ }^{1} k^{\prime \prime}$ is the Kraemer constart, ${ }^{2}$ and [η] is the intrinsic viscosity.

```
C INTERPOLATION AOtAISOUARE*X
```



```
    IFSQ(3),TITLE(13),R(4), XI(13),CC(100)
    89 READ(5.90IMN
    90 FORMAT(I3)
    00163II=1,MN
    READ(5,3) (TITLE(J), J=1,13)
    3 FORHAT(13AG)
    URITE(6,59)(TITLE(J);J=1,13)
59 FORMAT(1H1:20X:13A6)
62 READ (5,M)NN,PKFAC,AKA
    IF(NN.LE.1)SOTO\63
    4 FORPAF(13,2F10.4.E10.3)
    READ(5,6)TS,(T(m), H=1,VY)
    6 FORMAT(1OFR.3)
    READ(5,GIIWEIGHT,(Cこ(M),M=1,NN)
61 FORMAT(F10.7.10F7.4)
    SUMCC=0.0
    0077M=1.NN
    SUMCC=SUMCC CCC(m)
    C(M)=WEIGHT*100.0/SUMC:
    X(F)=PK*C(M)
    Y(m)=(T(m)-TS)/(TS*C(N):
    7% CONTINUE
    SUMX=0.0
    SumXY=0.0
    SUMX0=0.0
    SUMY=0.0
    00 51 J=1,NN
    SUMY =SUMY+Y(J)
    SUMX=SUM}X+X(J
    SUNXY=SUMXY+X(J)*Y(J)
    51 SUMXQ = SUnXQ +X(J) # X(J)
    B(1)=1.0
    B(2)=(1.5*SUMx)/SUMxa
    ON=NN
    B(3)=(ON-2.0*SUMXY)/(2,0*SU#Xa)
    B(4)=-SUMY/(2.0*SU#XO)
    CALL SEOSTB,XROXI,KWPLI
    00 10 I=1.3
    IF\XI(1).LT.0.0)601010
    IF(XI(I).GT.0.0)G0T010
    SQRII=0.0
    DO 11 J=1,NN
    11 SOCI)=SQ(I)*(Y(J)-XR(I)-XR(I)* XR(I)*X(J))*{Y(J)-XRII)-XR(I)
    1*XR(I)*X(J))
    IF(L.EQ.2IOMIN=SO(I)
    IFIL.EO.2)RMIN=XR(I)
    IFIL.EO.2)GOTOMO
    10 CONTINUE
    OMIN=SQ(1)
    RMIN=XR(1)
    20 30 K=2.3
    IFISO(K).GT.OMIN)GOTOBr
    OMIN=SO(K)
    RMIN=XR(K)
    30 CONTINUE
    40 QRHIN=RMIN*RHIN
    AO=RMIN/AKA
    AL=ALOG(AO)
    RA=1.0/AC
    ARG=RA*AL
```

Fig. 3 (continued)

```
630
65*
66%
67%
6月*
60%
71*
71%
75*
74*
75%
74*
77*
74*
79*
80%
81*
82*
83*
84*
85*
PM=EXP{MRGI
    HRITE(B-80)
80 FORMAT(//H/IX**LIST O: MEMSURES**/)
    WRITE(6.81)TS.PK
81 FORMAT|//*1X** TS=*.FT.2.5X** HUSGINS CONSTANT=*,F10***//**
    DO35m=2*NN
    YI(M)=RMIN+ORMIN*Y(#)
    OIF(m)=Y(M)-YI(M)
        WRITE(B&8?}M*T(M)&C(M), X(M),Y(M),YI(M),JIC(M)
35 CONTINUE
```



```
        IFPL.EQ.I)URITE(6,84)
*4 FORMAT(f/*1X**NUMBER % FEAL P03TS=3**)
    IF(L.EO.2)WRITF(8.321)
321 FORMAT(/1/1X.* NUMBER )= REAL ROJTS=1 **)
    WRITE(6.83IRMINFACFAKAFPM
```



```
        I=**F7.4*2X**K=**EIC.3-2X.* MOL WEIGH*=**E12.4)
            SOT062
163 CONTINUE
    99 STOP
        END
```

Fig. 3. Third computer program using a known Huggins constant.

```
    POLYISOBUTMLENE A IN CYCLOHEXANE T=3OC VISCOm.I
LIST OF MEASUPES
TS = 323.50 WITH DENSITY AND KINETIC-ENERGY CORRECTIONS
1 TIME(SEC)= 731.10 X(G/OL)= .3125 Y=4.7933 F1= 4.8084
2 TIMESSEC)= 575.50 X(G/DL)= .20R3 Y= . 5025 FI= 4.4916
3 TINE(SEC)= 505.50 X(G/DL)=.1563 Y= 4.3718 F1= %.3332
4IME(SECI= 437.20 X{G/DLI= 11042 Y= 4.1403 F1= 4.1748
STANDARD DEVIAIION= .0380
CONFIDENCE INTERVAL =95
INTERCEPTI=IMTRINSIC VISCOSITYI= 3.85R-. 22R2
SLOPE = .3041+01 *- - 1087+01
HUGGINS CONSTANT=.2043 MAX= .3133 MIN= .1171
A=.6900+00 K= .2760-03
AVERAGE MOL HEIGHT= . 1018+07 MAX= .1107*07 MIN= .9322406
```

Fig. 4. OUTPUT of the first program according to cards 3-8 of the INPUT of Table II.

```
POLYISOBUTYLENE A IN CYCLOHEXANE T=30C VISCOM.L
LIST OF MEASURES
TS = 323.50 UITHOUT CORRECTIONS
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline 1 & TIMEASECJ = & 731.10 & Xf6/DL: \(=\) & . 3125 & \(Y=\) & *.0319 & \(1=\) & 4.0468 \\
\hline 2 & TIME(SEC) = & 575.50 & \(x(6 / D L)=\) & .2083 & \(\mathbf{r}=\) & 3.7391 & Y \(1=\) & 3.7265 \\
\hline 3 & TIME(SEC) = & 505. 50 & \(X(G / 0 L)=\) & .1563 & \(r=\) & 3.6006 & Y1= & 3.5663 \\
\hline 4 & TIME(SEC) \(=\) & 437.20 & X(G/DL) \(=\) & .1042 & \(\mathbf{Y}=\) & 3.3741 & Y1= & 3.4061 \\
\hline
\end{tabular}
STANDARD OEVIATION= .0360
CONFIDEMCE INTERYAL =95
INTERCEPT(=INTRINSIC YISCOSITY)= 3.086*-.2109
SLOPE= -3075+01*-.1004*01
HUGGINS CONSTANT= .3229 mAX= . %935 mIN= .1905
A=.6900+00 K= .2760-03
AVERAGE MDL HEIGHT= . \(7368+06\) MAX= .8108406 MN= .6649406
```

Fig. 5. OUTPUT of the first program according to cards $10-15$ of the INPUT of Table II.

Experimentally the viscosimetric measurements are repeated varying the initial concentration with dilution: plotting eqs. (3) and (4), one obtains [η] which is correlated to polymer molecular weight M through the Mark-Houwink ${ }^{3,4}$ equation

$$
\begin{equation*}
[\eta]=\mathrm{K} M \tag{5}
\end{equation*}
$$

where K and a are characteristic constants for every polymer-solvent system.

PRINCIPLES OF CALCULATION

First of all, the values of the different concentrations (in $\mathrm{g} / 100 \mathrm{cc}$) are calculated from the polymer weight and from the solvent volume (cc) added in every test. Considering the additivity of the volumes, the solution densities are calculated from the polymer and solvent densities. According to eq. (1), $\eta_{s p}$ is calculated from the values of K, t_{s}, and t for every concentration c. However, it is possible to use the simplified eq. (2), too. At this stage, all the

```
POLYISOBUTYLENE B IN CYCLOHEXANE T=30C VISCOM. 2
```

```
LIST OF MEASURES
TS = 204.30 UITH DENSITY AND KINETIC-ENERGY CORRECTIONS
1 TIME\SECI= 563.50 X(6/DL)=.3212 Y=6.2817 Y1=6.3016
2 TIME(SEC) = 424.60 X(G/DL) = 2141 Y= 5.8420 Y1= 5.8150
3 TIME(SEC)= 361.40 X(G/DL)=.2606 Y= 5.5975 Y1= 5.5717
4TIME(SEC)= 302.40 X(G/DL)= .10%1 Y= 5.2957 Y:= 5.3285
STANDARD DEVIATION= .0378
CONFIDENCE INTERVAL =90
INTERCEPT(=INTRINSIC VISCOSITY) = 4.842 *-. 1505
SLOPE= .4544*01*-.6974*00
HUGGINS CONSTANY= .193B MAX= .2382 mIN= .1544
A=.6900+00 K= .2760-03
AVERAGE MOL HEIGHT= 1415+07 MAX= .1480+07 MIN= .1352407
```

Fig. 6. OUTPUT of the first program according to cards $17-22$ of the INPUT of Table II.
data to be entered into eq. (3) are available. Substituting now $y=\eta_{s p} / c$ and $x=c$, eq. (3) becomes

$$
\begin{equation*}
y=a_{0}+a_{1} x \tag{6}
\end{equation*}
$$

where $a_{0}=[\eta]$ and $a_{1}=k^{\prime}[\eta]^{2}$.
The best values of the constant a_{0} and a_{1} are obtained by a least-squares method. The confidence intervals (with the coefficient of confidence $1-\alpha$) for the intercept a_{0} and for the slope a_{1} are given ${ }^{14}$ from

$$
\begin{gather*}
a_{0} \pm t_{\alpha / 2 ; n-2} s_{y / x} \sqrt{\frac{1}{n}+\frac{(\bar{x})^{2}}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}} \tag{7}\\
a_{1} \pm t_{\alpha / 2 ; n-2} \tag{8}\\
\sqrt{s_{y / x} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}
\end{gather*}
$$

```
POLYISOBUTYLENE B IN CYCLOHEXANE T=30C VISCOM.2
LIST OF mEASURES
TS = 204.30 WITHOUT CORRECTIONS
```



```
STANDARD DEVIATION= .0392
CONFIDENCE INTERVAL = 90
INTERCEPTG=INTRINSIC VISCOSITYS= $.030 *- . 1559
SLOPE = .4559+01 *- . 1223+00
HUGGINS CONSTANT= .2807 MAX= .3518 mIN= .2189
A=.6900.00 K= .2760-03
AVERAGE MOL HEIGHT= . 1085*07 MAX= .1146007 MIN= . 1025*07
```

Fig. 7. OUTPUT of the first program according to cards 24-29 of the INPUT of Table II.
where $t_{\alpha / 2 ; n-2}$ is the Student's t-coefficient with $n-2$ degrees of freedom. The numerical values of the t coefficient are tabulated ${ }^{15}$ and reported in Table I as a function of the degrees of freedom $n-2$ (that is, also of the number of tests) and of α; $1-\alpha$ represents the probability that the values of a_{0} and of a_{1} are included between the limits indicated in eq. (7); \bar{x} is the average value of $x_{i} ; s_{y / x}$ is the standard deviation

$$
\begin{equation*}
s_{y / x}=\sqrt{\frac{\sum_{i=1}^{n}\left(y_{i}-y_{c}\right)^{2}}{n-2}} \tag{9}
\end{equation*}
$$

where y_{c} is the calculated value of y.
Then, the calculations of $k^{\prime}\left(=a_{1} / a_{0}^{2}\right), M\left(=\left(a_{0} / \mathrm{K}\right)^{1 / a}\right)$, and their maximum and minimum values in the considered confidence intervals are performed.

The FORTRAN IV program of this calculation is reported in Fig 1. Another program, which uses the Kraemer eq. (4), instead of the Huggins eq. (3), is reported in Figure 2. In this case, we make the substitutions $y=\ln \eta$ rel $/ c$

```
POLYISOBUTYLEME B IN CYCLOHEXANE T=30G VISCOM.2
```

```
LIST OF ME ASURES
```

$T S=204.30$ HITHOUT CORRECTIONS

1	IIMEISEC =	563.50	$x(6 / 0 L)=$. 3212	$r=$	5.4738	$Y \mathbf{I}=$	5.4948
2	JIME(SEC) =	424.60	X (G/DL) $=$	-2141	$Y=$	5.0357	$\mathrm{Y} 1=$	5.0066
3	IIME(SEC) $=$	361. 0	X $6 / 010=$. 1606	$Y=$	4.7881	V1=	4.7626
4	IXME(SEC) =	302.40	X(G/OL) =	.1071	$Y=$	4.4848	$\mathrm{Y}_{1}=$	4. 5185

STANDARD DEVIATION= . 0392

```
CONFIDENCE INTERYAL =90
INTERCEPIR=INTRINSIC MISCOSITYI= .0 30--. 2559
SLOPE = . $559.01 *-.7223*00
HUGGINS CONSTANT= .2807 MAX= . 3518 mIN= . 2189
```

Fig. 8. OUTPUT of the first program according to cards 31-36 of the INPUT of Table II.
and $a_{1}=k^{\prime \prime}[\eta]^{2}$ in eq. (6). The two programs are very similar, they have the same INPUT, and we can change the program only substituting the cards 36 , $37,38,59,85,86,87,88$, and 89 .

Beyond the approximation of eq. (2), another simplification can be done if we know the value of the Huggins constant. This value must be obtained from careful preliminary calibration tests with polymers of identical polydispersity. Equation (6) can now be written as follows:

$$
\begin{equation*}
y=a_{0}+k^{\prime} a_{0}^{2} X \tag{10}
\end{equation*}
$$

Indicating with X the value of $k^{\prime} x$, we obtain

$$
\begin{equation*}
y=a_{0}+a_{0}^{2} X \tag{11}
\end{equation*}
$$

where $a_{0}=[\eta]$.
TABLE I
Numerical Values of Student's t-Coefficient

$n-2$	$\alpha / 2=0.2$	0.1	0.03	0.025	0.01
1	1.376	3.078	6.314	12.71	31.82
2	1.061	1.886	2.920	4.303	6.965
3	0.978	1.638	2.353	3.182	4.541
4	0.941	1.533	2.132	2.776	3.747
5	0.920	1.476	2.015	2.571	3.365
6	0.906	1.440	1.943	2.447	3.143

```
        POLYISORUTYLENF A IV CYCLOHFXANE T=3OC VISCOM.I
LIST OF MEASUOES
TS = 323.50 HITH DENSITY ANO KINETIC-ENERGY CORRPGTIONS
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline 1 & & & & & & & & \\
\hline 2 & TIME(SEC)= & 575.50 & \(x(G / D L)=\) & . 2093 & \(Y=\) & 3.1760 & Y \(1=\) & 3.1874 \\
\hline 3 & TIME(SEC) \(=\) & 505.50 & X(G/DL) \(=\) & .1563 & & 3.3321 & \(\mathbf{V} 1=\) & 3.3175 \\
\hline 4 & TIME(SEC) = & 437.2n & \(x(G / O L)=\) & .1042 & \(\gamma=\) & 3.4423 & Y1 \(=\) & 3.4475 \\
\hline
\end{tabular}
STANDARD DEVIATIOM= .0137
CONFIDENCE INTERVAL = QE
INTERCEPI(EINIRINSIC VISCOSIIYI= 3.70R*-.OROS
SLOPE = -. 249.7+01 +- . 3824+00
KPAEMER CONSTMNT= -. 1816 MAX= -. 1607 MN= -.2007
A=.6900+0n k= . 2760-03
AVERAGE MOL WFIGHT= .9617* O6 MAX= .9917*06 MIN= .9313*06
```

Fig. 9. OUTPUT of the second program according to cards 3-8 of the INPUT of Table II.
The calculation of a_{0} which minimizes the sum of the squares of deviations employs a third-degree equation. In the program of Figure 3, this equation is solved by Cardano formulas using a library subroutine (SEQ 3).

EXAMPLES OF APPLICATION

We report as examples of application the data elaboration of two viscosimetric tests using two different samples of polyisobutylene in cyclohexane at $30^{\circ} \mathrm{C}$. The viscometers were chosen in such a way as to evidence the differences of the results obtained according to eqs. (1) and (2). The molecular weights are calculated according to the Krigbaum-Flory relationship ${ }^{16}$

$$
\begin{equation*}
[\eta]=2.76 \times 10^{-4} M^{0.69} \tag{12}
\end{equation*}
$$

The experimental data are reported in the INPUT cards. Table II reports the INPUT for both the programs of Figures 1 and 2. The INPUT of the program of Figure 3 is reported in Table III.

TABLE II
Example of INPUT for the First and Second Programs

TABLE III
Example of INPUT for the Third Program

Card number	Card content				
1	2				
2	POLYISO	BUTYL	NE A	CYCLO	HEXANE
3	40.2		0.69	2.76	E-04
4	323.5	731.1	575.5	505.5	437.2
5	0.03125	10	5	5	10
6	1				
7	POLYISO	BUTYL	NE B	CYCLO	HEXANE
8	40.2		0.69	2.76	E-04
9	204.3	563.5	424.6	361.4	302.4
10	0.03212	10	5	5	10
11	1				

```
POLYISOBUTYLENF IN CYCLOHEXANE T=30C VISCOM.I
LIST OF MEASURES
IS = 323.50 WITHOUT CORRECTIONS
```



```
STANDARD DEVIATION= .0200
CONFIDENCE INTERVAL =95
INTERCEPTGFINTRINSIC VISCOSITYI= 3.055**. 1171
SLOPE = -. 1496+01*-.5578*00
KRAEMER CONSTANT= -. 1506 MAX= -.0983 MIN= =. 1951
A=.6900*00 K= .2760-03
AVERAGE MOL HEIGHT= .7262*06 MAX= .7669*06 MIN= .6862*06
```

Fig. 10. OUTPUT of the second program according to cards $10-15$ of the INPUT of Table II.
POLYISOBUTYLENE B IN CYCLOHEXANE T=30C VISCOM. 2
LIST OF MEASURES
TS $=204.30$ WITH DENSITY AND KINETIC-ENERGY CORRECTIONS

STANOARD DEVIATION = . 0162
COMFIDENCE IMTERYAL $=90$

Fig. 11 (continued)
IMTERCEPT(=IMTRINSIC VISCOSITY) $=4.562 *-.0645$

SLOPE $=-.3527+01+-\quad-2988+00$

KRAEMER CONSTANT $=-.1695$ MAX $=-.1596$ miN $=-.1787$
$A=.6900+00 \quad K=.2760-03$

AVERAGE MSL WEIGHT = . 1298+n7 MAX= .1325*07 MIN= . 1272007
Fig. 11. OUTPUT of the second program according to cards 17-22 of the INPUT of Table II.

```
POLYISOBUTXLENE B IN CYCLOHEXANE T=30C VISCOW.2
LIST OF MEASURES
TS = 204.30 WITHOUT CORRECTIONS
1 TIME(SEC) = 563.50 X(G/DL)=.3212 Y=3.1587 VI= 3.1613
2 IIME(SEC)=424.60 X(G/DL)= 2141 Y= 3.4164 V1= 3.4156
3 IIME(SEC)= 361.40 XIG/OLI= . 1606 Y= 3.5517 Y1= 3.5427
4 IIME(SEC)= 302. %0 X(G/OLI= .1071 Y= 3.6628 Y1= 3.6699
STANOARD DEVIATION= .0083
CONFIDENCE INTERYAL =90
INTERCEPI(EINTRINSIC VISCOSITY)= 3.924*- .0330
SLOPE = -. 2375*01 *- . 1528*00
KRAEMER CONSTANT= -. 1542 MAX= -.1468 MIN= -. 1614
A= .6900+00 K= .2760-03
AVERAGE MOL HEIGHT= 10&&+07 MAX= . 1056*07 MIN= . 1031*07
```

Fig. 12. OUTPUT of the second program according to cards 24-29 of the INPUT of Table II.

```
POLYISOBUTYLENE B IN CYCLOHEXANE T=30C VISCOM.2
LIST OF MEASURES
TS = 204.30 HITHOUT CORRECTIONS
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline 1 & TIME(SEC) = & 563.50 & X(G/DL) \(=\) & . 3212 & \(Y=\) & 3.1587 & \(Y 1=\) & 3.1613 \\
\hline 2 & TIME(SEC) = & 424.60 & \(X(G / D L)=\) & . 2141 & \(Y=\) & 3.4164 & V1 \(=\) & 3.4156 \\
\hline 3 & TIME (SEC) \(=\) & 361.40 & \(x(G / D L)=\) & .1606 & \(\mathrm{r}=\) & 3.5517 & V1= & 3.5427 \\
\hline 4 & TIME (SEC) = & 302.40 & \(x(G / D L)=\) & . 1071 & \(Y=\) & 3.6628 & Y1 \(=\) & 3.669 \\
\hline
\end{tabular}
STANDARD DEVIATION= .0083
CONFIDENCE INTERVAL =90
INTERCEPT(-INTRINSIC VISCOSITY)= 3.024*-.0330
SLOPE = -. 2375+01 +- . 152R+00
KRAEMER CONSTAMT= -.1547. MAX= -.14AR mIN= -.1614
```

Fig. 13. OUTPUT of the second program according to cards $31-36$ of the INPUT of Table II.

```
POLYISORUTYLENE A IN EvELOHEx&NE T=3nC viscJM.I
```

ltst of mensures
TS = 323.53 HUGSINS CONSTANT $=.2030$

1	TIME (SEC)	731.10	c(6)01)=	.3125	$\mathrm{X}(-\mathrm{PK} *$ C) $=$. 3623	$Y=$	4.0319	$\mathrm{Y} 1=$	3.9434:	DIF =	. 0885
2	TIME(SEC) $=$	575.50	(16/0L) =	. 2083	$\left.X_{1}=P K * C\right)=$	- 1417	$r=$	3.7391	VI=	3.7201	DIF=	.0190
3	TIMETSEC] =	505.50	C(G)OL) $=$.1563	x(-pkec) $=$. $31 ?$	$Y=$	3.6906	$\mathbf{Y 1}=$	3.6085	DIF=	--0079
4	TIMEPSECS $=$	037.20	(16/01) $=$.1042	$\mathrm{X}:=P \mathrm{P}$ (C) $=$. 0208	$Y=$	3.3741	$\mathrm{Y} 1=$	3.4968	DIF=	-. 1227

NUMBER OF REAL ROOTS $=3$

Fig. 14. OUTPUT of the third program according to cards 2-5 of the INPUT of Table III.

We report the OUTPUT of the first program, which employs the Huggins equation, in Figures 4-8; the OUTPUT of the second program, which employs the Kraemer equation, in Figures 9-13; the OUTPUT of the third program, in Figures 14 and 15.

```
POLYISORUTYLENE P IN CYCLOHEXANE T=3NC VISCOM.2
```


Fig. 15. OUTPUT of the third program according to cards 7-10 of the INPUT of Table III.

In cards $4,11,18,25$, and 32 of the INPUT of Figure 2, the Student's t coefficients (already tabulated in Table I) for the desired confidence interval (last number on the right) up to 8 experimental points are reported.
Cards $5,12,19,26$, and 33 report the a and K values of eq. (5) for the considered polymer-solvent system: in our case, the data of eq. (12). When the INPUT value for K is negative (especially 33), the program does not calculate the molecular weight.

Cards 6, 13, 20, 27, and 34 report the number of experimental points, the viscometer constant K of eq. (2) (if we write a negative value for K, eq. (3) is employed), therefore the solvent and polymer densities.

Cards 7, 14, 21, 28, and 35 report the solvent and solutions efflux times.
Cards $8,15,22,29$, and 36 report first the polymer weight, the initial solvent volume (in cc), and then the solvent volume added at every dilution.

For the same polymer it is possible to place cards of the type 6,13 , etc., after cards of the type 8,15 , etc., obtaining a single list of results.

With regard to the cards reported in the INPUT of Table III, only cards 3 and 8 are different from those of Table II. In these cards, the number of experimental points, the Huggins constant, the a and K values of eq. (12) are reported.

References

1. M. L. Huggins, J. Amer. Chem. Soc., 64, 2716 (1942).
2. E. O. Kraemer, Ind. Eng. Chem., 30, 1200 (1938).
3. H. Mark, Die Feste Körper, Ed. Akademische Verlag, Lipsia, 1938.
4. R. Houwink J. Prakt. Chem. 175, 15 (1940).
5. P. A. D. De Maine and R. D. Seawright, Digital Computer Programs for Physical Chemistry, MacMillan, New York, 1963, p. 394.
6. I. Klein and D. I. Marshall, Computer Programs for Plastic Engineers, SPE, Reinhold, New York, 1968, p. 349.
7. M. Pegoraro, A. Penati, J. Barês, and A. Ascheri, Chim. Ind. (Milan), 53, 453 (1971).
8. B. T. Hofeiter, J. O. Ernst, and W. L. Williams, J. Appl. Polym. Sci., 17, 1449 (1973).
9. Ch'ien Jên-Yüan, Determination of Molecular Weights of High Polymers, IPST, Jerusalem, 1963, p. 47.
10. J. B. Kinsinger in Encyclopedia of Polymer Science and Technology, Vol. 14, H. F. Mark, N. G. Gaylord, and N. Bikahes, Eds., Interscience, New York, 1971, p. 717.
11. P. J. Flory, Principles of Polymer Chemistry, 8th ed., Cornell University Press, Ithaca, N.Y., 1971, p. 309.
12. R. H. Wagner, Anal. Chem. 20, 155 (1948).
13. G. V. Schulz, Z. Elektrochem., 43, 479 (1937).
14. A. H. Bowker and G. J. Lieberman, Engineering Statistics, Prentice Hall, New Jersey, 1959, p. 247.
15. A. H. Bowker and G. J. Lieberman, ibid. p. 558.

Received January 10, 1975
Revised January 22, 1975

